A very busy week, with another paper produced almost entirely within my group, just in time for wrapping up for holidays! With Davide Pedrotti, Jun-Qian Jiang, Luis Escamilla, and Simony Santos da Costa, we argue that the Hubble tension is inherently multidimensional, and that the matter density parameter Ωm and cold dark matter physical density ωc play key roles. In particular, we analytically explained why any model aiming to solve the Hubble tension will inevitably lead to an increase in ωc (because both Ωm and ωb are precisely calibrated by BAO and/or SNeIa, and BBN respectively) and, by extension, S8 (with potential problems for the S8 discrepancy), and explicitly verified that this holds on real data. We then argued that if cosmologists interested in solving the Hubble tension could ask for just one present from Father Christmas…well, then they really should wish to know the value of Ωm chosen by Nature - or, in practical terms, they should wish for a calibration of Ωm which is as reliable and model-independent as possible, and we put forward some ideas on how to achieve this. You can read our results in the preprint we just posted on arXiv: 2408.04530.