High-redshift galaxies

Negative cosmological constant and JWST (part 2)

Together with Nicola Menci, Shahnawaz Adil, Upala Mukhopadhyay, and Anjan Sen, today we posted a new preprint which is basically the sequel to our earlier negative cosmological constant and JWST paper published in JCAP. What we did here, in no small part thanks to Nicola’s contribution, was to perform a more thorough analysis of JWST data, which significantly strengthens our earlier conclusions and shows that a dark energy model featuring a negative cosmological constant is a very interesting candidate model in light of the JWST observations. One notable addition was our study not only of photometric observations, but also spectroscopic observations from the FRESCO survey, which again confirm the earlier results and at the same time make them much more robust. It was great fun working on this paper, and I learned a lot about high-redshift galaxies! You can read our results in the preprint we just posted on arXiv: 2401.12659.

Negative cosmological constant and JWST observations of high-redshift galaxies

Last summer, early observations from the James Webb Space Telescope (JWST) caused quite a stir due to their discovery of a puzzlingly abundant population of extremely massive galaxies at too high redshift, too many to have been in place if the ΛCDM model as we understand it is correct. In today’s new preprint with Shahnawaz Adil, Upala Mukhopadhyay, and Anjan Sen (all three from JMI, and kudos to Shahnawaz and Upala who did all the heavy-lifting!) we study whether these results could be explained by a dark energy model beyond the cosmological constant. In particular we consider a model featuring a negative cosmological constant (anti de Sitter vacuum) with an evolving component (whose energy density is of course positive) on top - this model is phenomenologically motivated from string theory considerations, particularly the swampland program, and the difficulty in constructing consistent de Sitter string vacua. We show that such a model can dramatically alter structure formation and potentially explain how the galaxies seen by JWST could have been in place much earlier than is allowed within ΛCDM. You can read our results in the preprint we just posted on arXiv: 2307.12763.